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Abstract 

Hypergraph and random hypergraph (special kind of hypergraph) are very important topic to study in 

current scenerio. So, paucity of studies in develop- ment of theory of random hypergraph inspire us to 

do a deeper study on the theory of development of hypergraph in different aspects of distribution the- 

ory. In this study, we describe the joint distribution and marginal distribution for a particular 

mathematical problem by forming hyperedges E on a random hypergraph H. 
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1 Introduction 

Problems related to real-life are accompanied by various unseen factors, affecting the standards of the 

solution and making things complex. For instance, rapid increase in the data set like, IoT (Internet of 

Things) like Facebook, Twitter, etc. (also called Small World [11]) work on the fundamental of a 

diverse user base that allows people to connect globally, recommendation system with uncertainty of 

liking or disliking, decision-making processes (user behaviour and trends), traffic management problem 

with rapid increase of automobiles, etc. One way of dealing with such unprecedential changes in the 

data set can be dealt by formulating them in the form of graphs (random graphs) or hypergraphs (random 

hypergraphs) and by leveraging the concept of graph and hypergraph, optimization can be done. 

It is worth mentioning that, the problem of such complexity in graph was first realised by Paul 

Erdos in 1959 [13] (write briefly about what actually he studied there). Interestingly, the concept of 

random graph have been extensively studied and applied in various network problems in the past as 

well as in the recent time [15]. However, graphs (random) as a tool for modelling are extensively used 

in various fields and being actively studied by researchers, they only support pairwise relationships 

between the vertices [12]. In fact, there are many real-world problems where interactions among the 

objects may not be always pairwise that is, more often muti-adic interactions of the objects in group wise 

[2, 12]. 

It is to be noted that, complexity pertaining due to multi-adic relationship in a systems, may be 

modelled better by hypergraphs [22]. A hypergraph is a generaliza- tion of a graph introduced by Claude 

Jacques Berge in 1973, as a means to generalise the approaches of graphs preserving the multi-adic 

relationship of the objects [20]. Additionally, hypergraph theory has established itself as a brand-new, 

active field of study with wide range of real-world applications, like in the fields of medical science, 

decision-making, sociology, epidemiology, criminology, etc. Moreover, many funda- mental concepts 

like subhypergraphs, directed hypergraphs, weighted hypergraphs, Eulerian hypergraphs, etc. in graphs 

have been generalized to hypergraph theory, and their different well-known properties have been 

studied [18, 1, 10, 24] . 

In our study, all hypergraph are consider to be simple hypergraph and occurrence of repeated 
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hyperedges does not arise. Like graphs, hypergraphs may be classified by distinguishing between 

undirected and directed hypergraphs. In our study, we consider both the hypergraph, directed and 

undirected. 

A directed hypergraph is a hypergraph with directed hyperedges. Giorgio et al.[16] discuss various 

properties and theorems of directed hypergraph. They de- fined the concepts of paths, cuts and 

connections of a hypergraph. Also they solved many problems related to operations research and 

computer science taking directed hypergraph as a tool. In 2018, Javidian et al.[17] also propose a model 

of Bayesian hypergraphs which is a form of directed acyclic hypergraph in probabilistic graphical manner. 

They introduce global, local and pairwise Markov properties of Bayesian hypergraphs and also define 

a operator named as shadow that is a projection oper- ator which maps Bayesian hypergraphs to chain 

graphs. An undirected hypergraph 

H = (V, E) consists a pair of set where V is the vertices or nodes set and E is the edges or 

hyperedges set. Each hyperedge e ∈ E may contain arbitrarily many vertices, the order being 

irrelevant, and is thus defined as a subset of V. On the other hand, hypergraph can be formed in the 

real life multi-criteria decision making problem. Rahman et al.[21] discussed about Choquet integral 

operator applied to the random hypergraph to determine the overall preference order of alternatives in 

practical multi-criteria decision-making problems. 

The structure of this paper can be summarized as follows: Section 2 includes basic terminologies 

of hypergraph theory, that have been used directly or indirectly throughout the paper. In Section 3, the 

concept of probabilistic random hypergraphs has been discussed with a suitable examples. Next we have 

discussed the joint distri- bution probability and marginal distribution probability on a probabilistic 

random hypergraph through a particular mathematical problem on decision making. The article ends 

with a concluding section. 

 

2 Preliminaries 

2.1 Hypergraph 

According to Berge [5], a hypergraph H = (V, E) on a finite set of vertices V = 

{v1, v2, · · · , vn} (called as vertex set) is defined as a family of hyperedges E = 

{e1, e2, · · · , em}, where each hyperedge ei, i = 1, 2, · · · , m is a non-empty subset of V such that ∪m ei = 

V . The order of the hypergraph is defined as the cardinality of the vertex set V and its size is 

defined as the cardinality of the edge set E. 

Any two vertices in a hypergraph are said to be adjacent if there is a hyperedge containing both of the 

vertices. Whereas, two hyperedges in a hypergraph are said 

to be incident if their intersection is not empty. Morover, if the family of hyperedges satisfies i ⇐⇒ ei ̸= 

ej , then H is said to be a hypergrph without repeated hyperedge. Furthermore, if ei ⊂ ej =⇒ i = j, then the 

hypergraph H is said to be Sperner family 

or simple hypergraph. In this paper, all hypergraphs are considered to be simple hyperegraph. For more 

general information on hypergraphs, we refer [?]. The degree of a hyperedge e is the number of vertices 

contain in e. A hypergraph is said to be 

k-regular if all vertices have the same degree k ≥ 0 and H is called as r-uniform if all hyperedges have 

the same degree r ≥ 0. 

A hypergraph H1 = (V1, E1) is said to be a subhypergraph of a hypergraph 

H = (V, E), if V1 ⊆ V and E1 ⊆ E. Moreover, the subhypergraph H1 is said to be 

partial subhypergraph of H if V1 = V . While, the subhypergraph H1 is said to an induced 

subhypergraphs of H if the hyperedges induced by V1 in H is also contained in H1. 

Example 2.1. Let V = {x1, x2, · · · x17} be a finite set of objects and E = {e1, e2, · · · , e7}, where e1 = {x1, 

x2, x3, x15}, e2 = {x3, x4, x5, x6}, e3 = {x6, x7, x8, x9}, e4 = {x8, x9, x10, x11, x13}, e5 = {x11, x12}, e6 = 

{x9, x13, x14, x15}, e7 = x16. be the non-empty 

subsets of V . Then, H = (V, E) is a hypergraph (see Figure 1). 
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Figure 1: Hypergraph representing Example 2.1. 

Observe that, the rank of the hypergraph H is r(H) = 5 (degree of e4), and its co-rank is cr(H) 

= 1 (degree of e7). It is to be noted that, the sub hypergraph 

H1 = (V1, E1), where E1 = {e1, e2, e3}) is a partial hypergraph generated by e1, e2, 

and e3. 

Now consider, the sub hypergraph H2 = (V2, E2) of H, such that 

V2 = {x2, x3, x6, x7, x10, x11, x13, x14, x15} 

and 

 
where e′= e1 ∩ V2 = {x2, x3, x15}, 𝑒2

′ ,= e2 ∩ V2 = {x3, x6}, 𝑒3
′ ,= e3 ∩ V2 = {x6, x7}, and e′ = e6 ∩ V2 = {x13, 

x15}) is an induced subhypergraph.  It is to be noted that, the hyperedge e′ = e5 ∩ V ′ = {x11} is 

not a herperedge of this induced subhypergraph. 

 

2.2 Probabilistic random Hypergraphs 

Let X be a random experiment and let S be the sample space of X. Let, S = 

{v1, v2, ..., vn} sample space be finite and let E be a collection of events of S, that is, E ⊆ P (X), where P 

(X) is the power set of X. Then, G = (S, E) forms a hypergraph. Let the edges be {e1, e2, ..., en}. We 

regard that e1 ⊆ E is also an event with probability f (e1) = w1 (say), where, 0 ≤ w1 ≤ 1. Also, f (ei) = 

wi, for i = 1, 2, ..., n and 0 ≤ wi ≤ 1. Let w1 denote the weight of the hyperedge, then the ordered triplet 

(S, E, W ) is a weighted hypergraph, where W = {w1, w2, ..., wn}.  Then, 

the hypergraphs (S, E), where the vertex set is the outcome of random experiment and edge set is the 

collection of events called random hypergraph and the weighted hypergraph (S, E, W), where weights 

are the corresponding probability of the edges is called probabilistic hypergraph. For details, we refer the 

reader to see citeRahman26. 

As an illustration to the above discussion, the following example is considered: 

Example 2.2. Consider the problem of assessment of the best science student from a group of 10 short-

listed students V = {v1, v2, . . . , v10}. Suppose the assessment of the students are made on the basis of 

the following five criteria Cj (j = 1, 2, 3, 4, 5): 

1. C1: Attendance 

2. C2: Knowledge 

3. C3: Conception 

4. C4: Computational Competence 

5. C5: Other activity 

The Annual performance grades of each student vi (i = 1, 2, . . . , 10) is given by score function values 

f (vi) = v(i,1), v(i,2), v(i,3), v(i,4) , where the partial evaluations v(i,j) corresponds to the assessment 

grade of each student vi (i = 1, 2, . . . , 10) with respect to each criteria Cj (j = 1, 2, 3, 4, 5). Assume that 

the assessment grade values are measured in a scale of grade 10. Then the assumed assessment of the 
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students in terms of the annual performance grades is expressed by the decision matrix D = [vij]10×5 

as shown below in Table 1. 

Criteria/Alternative C1 C2 C3 C4 C5 

v1 7.45 8.51 7.37 9.32 5.8 

v2 7.72 8.47 8.53 8.43 6.6 

v3 8.23 8.13 7.48 8.32 7.8 

v4 7.31 7.63 6.85 7.41 8.9 

v5 7.21 6.24 6.61 7.28 5.9 

v6 9.14 8.72 9.11 9.51 7.8 

v7 8.23 7.15 9.74 9.33 7.3 

v8 8.43 9.34 9.32 9.48 6.8 

v9 8.45 7.81 9.23 8.68 7 

v10 9.78 8.91 8.64 9.34 8.8 

Table 1: The assessment decision matrix D. 

1. Suppose a decision maker identify four groups ek (1 ≤ k ≤ l = 5) as the partial evaluations of the 

alternatives vi (i = 1, 2, . . . , 10) corresponding to the interrelated criteria from the set of criteria C = 

{C1, C2, C3, C4, C5} based on his expertise knowledge of the subject. We consider e1 = {C1, C2}, e2 

= {C2, C4}, e3 = {C1, C4}, e4 = {C3, C4, C5} be four hyperedge. This will form a random hypergraph 

H = (V, E) for the hyperedges E = {e1, e2, e3, e4}, 

corresponding to the criteria Ci, i = 1, 2, . . . , 5. The graphical representation of the random hypergraph 

in this case can represented in the following manner (see Figure 2). 

 
Figure 2: Random hypergraph with four hyperedges. 

 

2. Define an interaction matrix B as follows: 

B = [bij]n×m , 

where bij = vijlj (i = 1, 2, . . . , n; j = 1, 2, . . . , m) and lj (j = 1, 2, . . . , m) are the interaction levels 

of Cj (j = 1, 2, . . . , m), respectively. The interaction level of any vertex in a hypergraph refers to the 

number of vertices that have direct links with that vertex. For example, if a vertex v is incident with 

exactly t hyperedges, then the level of the vertex is determined by the number of distinct vertices contained 

in those t hyperedges. 

Criteria/Alternative C1 C2 C3 C4 C5 Sum 

v1 14.9 17.02 7.37 27.96 5.8 73.03 

v2 15.44 16.94 8.53 25.29 6.6 72.8 

v3 16.64 16.26 7.48 24.96 7.8 72.96 

v4 14.62 15.26 6.85 22.23 8.9 67.86 

v5 14.42 12.48 6.61 21.84 5.9 61.25 

v6 18.28 17.44 9.11 28.53 7.8 81.16 

v7 16.46 14.3 9.74 27.99 7.3 75.79 

v8 16.86 18.68 9.32 28.44 6.8 80.1 

v9 16.9 15.62 9.23 26.04 7 74.79 

v10 19.56 17.82 8.64 28.02 8.8 82.84 
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3. We get the decision Matrix by normalization of interaction matrix. 

we consider the hyperedges as e1 = {C1, C2}, e2 = {C2, C4}, e3 = {C1, C4}, e4 = {C3, C4, C5}. we can 

obtained the ei’s (i = 1, 2, . . . , 4) by summing up with respective Ci, (i = 1, 2, . . . , 5) and dividing 

with the sum of respective vi, i = 1, 2, ..., 10. 

Criteria/edege e1 e2 e3 e4 

v1 0.218480493 0.244079398 0.229568789 0.307871321 

v2 0.22239011 0.207005495 0.196703297 0.323626374 

v3 0.224232456 0.225466009 0.226836623 0.323464912 

v4 0.220159151 0.221632773 0.216917182 0.341290893 

v5 0.219591837 0.220734694 0.236571429 0.323102041 

v6 0.220059142 0.224618038 0.229793001 0.325529818 

v7 0.202929146 0.217442934 0.231692835 0.347935084 

v8 0.22184769 0.234956305 0.223595506 0.319600499 

v9 0.217408744 0.220484022 0.229041316 0.333065918 

v10 0.225615645 0.220304201 0.230806374 0.323273781 

 

3 Joint and marginal distribution over random hyper- graph 

In this section of the paper, we have studied the joint distribution on random hy- pergraph by 

considering two random variables X and Y , where X = f (ei) and 

Y = g(ei) ei ∈ E, (i = 1, 2, . . . , 4), respectively. 

X = f (ei) 0.218480493 0.244079398 0.229568789 0.307871321 

Y = g(ei) 0.22239011 0.232142857 0.221840659 0.323626374 

Now let us define the joint probability mass function of the two random variables 

X and Y as 

PXY (x, y) = P (X = x, Y = y). 

Also 

PXY (x, y) = P (X = x, Y = y) = P ((X = x) and (Y = y)). 

We can define the joint range for X and Y as follows: 

RXY = {(x, y)|PXY (x, y) > 0}. 

In particular if RX = {x1, x2, ...} and RY = {y1, y2, ...}, then we can write 

RXY ⊂ RX × RY = {xi, yj)|xi ∈ RX, yj ∈ RY }. 

Moreover, for two random variables X and Y , we have 

∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)

(𝑥𝑖,𝑦𝑗)∈𝑅𝑋𝑌

= 1 

Thus, for any set A ⊂ R2, where (X, Y ) ∈ A, we can find the joint probability mass function as 

P(X,Y) = ∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)(𝑥𝑖,𝑦𝑗)∈𝑅𝑋𝑌
 

and that can be determined as follows: 

p(X=x,Y=y) Y1 Y2 Y3 Y4 ∑ F(Y) 

X1 0.048587901 0.050718686 0.048467857 0.07070605 0.218480493 

X2 0.054280844 0.056661289 0.054146735 0.07899053 0.244079398 

X3 0.051053828 0.053292754 0.050927691 0.074294515 0.229568789 

X4 0.068467537 0.071470128 0.068298377 0.099635279 0.307871321 

∑ F(Y) 0.22239011 0.232142857 0.221840659 0.323626374 1 
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3.1 Marginal distribution over random hypergraph 

The joint probability mass function contains all information regarding the distributions of X and Y . We 

can obtain the probability mass function of X from its joint probability mass function with Y . We can 

write 

PX(x) = P(X = x) = ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦𝑗)𝑦𝑗∈𝑅𝑌
=  ∑ 𝑃𝑋𝑌(𝑥, 𝑦𝑗)𝑦𝑗∈𝑅𝑌

 

Similarly, we can obtain the marginal probability mass function of Y as 

PY(Y = y) = ∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦)𝑥𝑖∈𝑅𝑋
 

The marginal distribution of X in the Example 2.2 can be formulated by Table 2 as shown below. 

X X1 X2 X3 X4 

∑ F (X) 0.218480493 0.244079398 0.229568789 0.307871321 

Table 2: The assessment matrix Q. 

Similarly, the marginal distribution of Y can be formulated as in Table 3 given below. 

Y Y1 Y2 Y3 Y4 

L- 
F (Y ) 0.22239011 0.232142857 0.221840659 0.323626374 

Table 3: The assessment matrix Q. 

 

4 Discussion and conclusion 

We discussed about various types of hypergraph and given suitable example for degree distribution to 

the random hypergraph. We consider a numerical problem with ten alternatives and five criteria which 

forms a decision matrix. To get the interaction matrix we apply some interaction to the decision matrix. 

We form a random hypergraph with four hyperedges after normalising the interation matrix. Two 

random variables are introduced which is a function of hyperedges. These two random variables verify 

some distributive properities such as joint distribution and marginal distribution. This findings could 

be benificial for other distribution like binomial, poisson and normal distribution in future studies. 
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